Invertibility of sparse non-Hermitian matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence of Hermitian Matrices by Hermitian Matrices

Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...

متن کامل

Wigner surmise for Hermitian and non-Hermitian chiral random matrices.

We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...

متن کامل

Products of independent non-Hermitian random matrices

We consider the product of a finite number of non-Hermitian random matrices with i.i.d. centered entries of growing size. We assume that the entries have a finite moment of order bigger than two. We show that the empirical spectral distribution of the properly normalized product converges, almost surely, to a non-random, rotationally invariant distribution with compact support in the complex pl...

متن کامل

Cavity approach to the spectral density of non-Hermitian sparse matrices.

The spectral densities of ensembles of non-Hermitian sparse random matrices are analyzed using the cavity method. We present a set of equations from which the spectral density of a given ensemble can be efficiently and exactly calculated. Within this approach, the generalized Girko's law is recovered easily. We compare our results with direct diagonalisation for a number of random matrix ensemb...

متن کامل

Ritz Value Localization for Non-Hermitian Matrices

Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2017

ISSN: 0001-8708

DOI: 10.1016/j.aim.2017.02.009